Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics

2019 
Integrated optical isolators have been a longstanding challenge for photonic integrated circuits (PICs). An ideal integrated optical isolator for a PIC should be made by a monolithic process, have a small footprint, exhibit broadband and polarization-diverse operation, and be compatible with multiple materials platforms. Despite significant progress, the optical isolators reported so far do not meet all of these requirements. In this paper we present monolithically integrated broadband magneto-optical isolators on silicon and silicon nitride (SiN) platforms operating for both TE and TM modes with record-high performances, fulfilling all the essential characteristics for PIC applications. In particular, we demonstrate fully TE broadband isolators by depositing high-quality magneto-optical garnet thin films on the sidewalls of Si and SiN waveguides, a critical result for applications in TE-polarized on-chip lasers and amplifiers. This work demonstrates monolithic integration of high-performance optical isolators on-chip for polarization-diverse silicon photonic systems, enabling new pathways to impart nonreciprocal photonic functionality to a variety of integrated photonic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []