language-icon Old Web
English
Sign In

Optical isolator

An optical isolator, or optical diode, is an optical component which allows the transmission of light in only one direction. It is typically used to prevent unwanted feedback into an optical oscillator, such as a laser cavity. The main component of the optical isolator is the Faraday rotator. The magnetic field, B {displaystyle B}  , applied to the Faraday rotator causes a rotation in the polarization of the light due to the Faraday effect. The angle of rotation, β {displaystyle eta }  , is given by,The polarization dependent isolator, or Faraday isolator, is made of three parts, an input polarizer (polarized vertically), a Faraday rotator, and an output polarizer, called an analyzer (polarized at 45°).The polarization independent isolator is made of three parts, an input birefringent wedge (with its ordinary polarization direction vertical and its extraordinary polarization direction horizontal), a Faraday rotator, and an output birefringent wedge (with its ordinary polarization direction at 45°, and its extraordinary polarization direction at −45°). The most important optical element in an isolator is the Faraday rotator. The characteristics that one looks for in a Faraday rotator optic include a high Verdet constant, low absorption coefficient, low non-linear refractive index and high damage threshold. Also, to prevent self-focusing and other thermal related effects, the optic should be as short as possible. The two most commonly used materials for the 700–1100 nm range are terbium doped borosilicate glass and terbium gallium garnet crystal (TGG). For long distance fibre communication, typically at 1310 nm or 1550 nm, yttrium iron garnet crystals are used (YIG). Commercial YIG based Faraday isolators reach isolations higher than 30 dB.It might seem at first glance that a device that allows light to flow in only one direction would violate Kirchhoff's law and the second law of thermodynamics, by allowing light energy to flow from a cold object to a hot object and blocking it in the other direction, but the violation is avoided because the isolator must absorb (not reflect) the light from the hot object and will eventually reradiate it to the cold one. Attempts to re-route the photons back to their source unavoidably involve creating a route by which other photons can travel from the hot body to the cold one, avoiding the paradox.

[ "Wavelength", "Optical fiber", "Laser", "Verdet constant" ]
Parent Topic
Child Topic
    No Parent Topic