Synthesis of 1D-MoS2/graphene nanotubes aided with sodium chloride for reversible lithium storage

2021 
Abstract A novel negative material consisting of graphene nanotubes and ultrathin MoS2 is synthesized by a simple one-step hydrothermal method assisted with Sodium chloride. The MoS2/Graphene electrodes deliver a specific capacity of 1350 mAh g−1 under 0.1 A g−1 and high rate capability (retaining 85.5% capacity from 0.1 A g−1 to 0.8 A g−1). A high remarkable capacity of 820 mAh g−1 can still be recovered at 0.5 A g−1 after 500 cycles, and the average coulombic efficiency was as high as 99.98% during the additional 500 cycles. The excellent Li-ion storage performance of MoS2/Graphene nanotubes may be attributed to the ultra-thin MoS2 flakes and curled graphene nanotubes. This structural feature has a strong adsorption capacity for lithium ions, which can provide a broad space for ion storage. A large number of active sites dispersed in the layered molybdenum disulfide promote the kinetics of the electrochemical reaction, empowering the ultra-thin layered molybdenum disulfide to get a higher theoretical capacity. In addition, the existence of the tubular structure alleviates volume expansion and provides a way for the rapid movement of electrons and diffusion of Li+ during repeated cycles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    0
    Citations
    NaN
    KQI
    []