Adenovirus-Mediated Overexpression of Caveolin-3 Inhibits Rat Cardiomyocyte Hypertrophy

2003 
Caveolae are omega-shaped organelles of the cell surface. The protein caveolin-3, a structural component of cardiac caveolae, is associated with cellular signaling. To investigate the effect of adenovirus-mediated overexpression of caveolin-3 on hypertrophic responses in cardiomyocytes, we constructed an adenovirus that encoded human wild-type caveolin-3 (Ad.Cav-3), mutant caveolin-3 (Ad.Cav-3Δ), or bacterial β-galactosidase (Ad.LacZ). This mutant has been reported to cause human limb-girdle muscular dystrophy. It lacks 9 nucleotides in the caveolin scaffolding domain and behaves in a dominant-negative fashion. Rat neonatal cardiomyocytes were infected with the virus and then harvested 36 hours after infection. In noninfected cells, phenylephrine (PE) and endothelin-1 (ET) increased cell size and [ 3 H]leucine incorporation, along with the induction of sarcomeric reorganization and the reexpression of β-myosin heavy chain, indicating myocyte hypertrophy. Infection with Ad.LacZ had no effect on those parameters. Ad.Cav-3 prevented the PE- and ET-induced increases in cell size, leucine incorporation, sarcomeric reorganization, and reexpression of β-myosin heavy chain. Ad.Cav-3 also blocked the PE- and ET-induced phosphorylations of extracellular signal-regulated kinases (ERKs) but did not affect c -Jun amino-terminal kinase and p38 mitogen-activated protein kinase activities. In contrast, Ad.Cav-3Δ significantly augmented hypertrophic responses to ET, which were associated with increased ET-induced phosphorylation of ERK1/2. These results suggest that caveolin-3 behaves as a negative regulator of hypertrophic responses, probably through suppression of ERK1/2 activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    25
    References
    41
    Citations
    NaN
    KQI
    []