Finite-Element-Based Modeling for Flight Dynamics and Aeroelasticity of Flexible Aircraft

2017 
Fully coupled equations of rigid-body and structural dynamics of flexible aircraft are deduced from the weak formulation of Cauchy’s equation for an unconstrained elastic continuum. An appropriate choice of the body coordinate system enables to describe inertial coupling using a reduced set of coefficients, which are estimated for complex configurations via finite element method discretization. A fully coupled linearized formulation around aeroelastic trim conditions is presented and implemented using data from a generic finite element method solver. Small-disturbance, fully unsteady aerodynamics is modeled in the frequency domain via doublet lattice method and recast in time-domain state-space form by means of a rational function approximation. A state-space representation of the linearized system is ultimately obtained, which simultaneously includes rigid-body, elastic, and aerodynamic state variables. Numerical results for two representative configurations are presented and discussed to point out the i...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    16
    Citations
    NaN
    KQI
    []