Optical effects of spin currents in semiconductors

2012 
A spin current has novel linear and second-order nonlinear optical effects due to its symmetry properties. With the symmetry analysis and the eight-band microscopic calculation we have systematically investigated the interaction between a spin current and a polarized light beam (or the "photon spin current") in direct-gap semiconductors. This interaction is rooted in the intrinsic spin-orbit coupling in valence bands and does not rely on the Rashba or Dresselhaus effect. The light-spin current interaction results in an optical birefringence effect of the spin current. The symmetry analysis indicates that in a semiconductor with inversion symmetry, the linear birefringence effect vanishes and only the circular birefringence effect exists. The circular birefringence effect is similar to the Faraday rotation in magneto-optics but involves no net magnetization nor breaking the time-reversal symmetry. Moreover, a spin current can induce the second-order nonlinear optical processes due to the inversion-symmetry breaking. These findings form a basis of measuring a pure spin current where and when it flows with the standard optical spectroscopy, which may provide a toolbox to explore a wealth of physics connecting the spintronics and photonics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    7
    Citations
    NaN
    KQI
    []