ATP-independent glucose stimulation of sphingosine kinase in rat pancreatic islets

2010 
Sphingosine kinase (SPHK) catalyzes sphingosine 1-phosphate production, promoting cell survival and reducing apoptosis in isolated rat pancreatic islets. Glucose, the primary islet β-cell growth factor and insulin secretagogue, increased islet SPHK activity by 3- to 5-fold following acute (1 h) or prolonged (7 days) stimulation. Prolonged stimulation of islets with glucose induced SPHK1a and SPHK2 mRNA levels; there were no changes in SPHK protein expression. To isolate the metabolic effects of glucose on SPHK activation, islets were stimulated with glucose analogs or metabolites. 2-deoxy-D-glucose (2-DG), an analog phosphorylated by glucokinase but not an effective energy source, activated SPHK similarly to glucose. In contrast, 3-o-methylglucose (3-oMeG), which is transported but neither phosphorylated nor metabolized, did not increase islet SPHK activity. Glyceraldehyde and α-ketoisocaproic acid (KIC), metabolites that stimulate glycolysis and the citric acid cycle, respectively, did not activate islet SPHK. Moreover, inorganic phosphate blocked glucose-induced SPHK activation. A role for SPHK activity in β-cell growth was confirmed when small interfering (si)SPHK2 RNA transfection reduced rat insulinoma INS-1e cell SPHK levels and activity and cell growth. Glucose induced an early and sustained increase in islet SPHK activity that was dependent on glucose phosphorylation, but independent of ATP generation or new protein biosynthesis. Glucose-supported β-cell growth appears to be in part mediated by SPHK activity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    14
    Citations
    NaN
    KQI
    []