Hirudin Binding Reveals Key Determinants of Thrombin Allostery

2005 
Abstract Thrombin exists in two allosteric forms, slow (S) and fast (F), that recognize natural substrates and inhibitors with significantly different affinities. Because under physiologic conditions the two forms are almost equally populated, investigation of thrombin function must address the contribution from the S and F forms and the molecular origin of their differential recognition of ligands. Using a panel of 79 Ala mutants, we have mapped for the first time the epitopes of thrombin recognizing a macromolecular ligand, hirudin, in the S and F forms. Hirudin binding is a relevant model for the interaction of thrombin with fibrinogen and PAR1 and is likewise influenced by the allosteric S→F transition. The epitopes are nearly identical and encompass two hot spots, one in exosite I and the other in the Na+ site at the opposite end of the protein. The higher affinity of the F form is due to the preferential interaction of hirudin with Lys-36, Leu-65, Thr-74, and Arg-75 in exosite I; Gly-193 in the oxyanion hole; and Asp-221 and Asp-222 in the Na+ site. Remarkably, no correlation is found between the energetic and structural involvements of thrombin residues in hirudin recognition, which invites caution in the analysis of protein-protein interactions in general.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    28
    Citations
    NaN
    KQI
    []