Hormonal Control of ADP-ribosyl Cyclase Activity in Pancreatic Acinar Cells from Rats

2003 
Abstract Cyclic ADP-ribose, a metabolite of NAD+ evokes Ca2+ release from intracellular stores in different cells. We have determined the activity of cADPr-producing enzymes (ADP-ribosyl cyclases) in different cellular fractions prepared from isolated pancreatic acinar cells by measuring the conversion of the β-NAD+ analogs 1,N6-etheno-NAD and nicotinamide guanine dinucleotide to the fluorescent products 1,N6-etheno-cADPr and cyclic GDP-ribose, respectively. Substrate/product analyses were carried out by reverse-phase high pressure liquid chromatography. In all subcellular fractions examined (cytosol, mitochondria, plasma, and intracellular membranes), ADP-ribosyl cyclase activity was detected except in zymogen granular membranes. Western blot analysis and immunoprecipitation experiments revealed the presence of the ADP-ribosyl cyclase CD38 in both plasma membranes and mitochondria but not in the cytosol. Hormonal stimulation of intact acinar cells for 1 min with acetylcholine (ACh), cholecystokinin (CCK), or a membrane-permeant analog of cGMP increased ADP-ribosyl cyclase activity in the cytosol by 1.8-, 1.6-, and 1.9-fold, respectively, as compared with the control but had no effect in any other fraction. Both ACh and CCK also increased accumulation of cGMP in the cells by about 2-fold. Bombesin had no significant effect on either ADP-ribosyl cyclase activity or cGMP accumulation within this short period of stimulation. We conclude that at least two types of ADP-ribosyl cyclases are present in pancreatic acinar cells: membrane-bound CD38 and a cytosolic enzyme different from CD38. Stimulation of pancreatic acinar cells with CCK or ACh results in exclusive activation of the cytosolic ADP-ribosyl cyclase activity, most likely mediated by cGMP.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    42
    References
    37
    Citations
    NaN
    KQI
    []