language-icon Old Web
English
Sign In

Cholecystokinin

Cholecystokinin (CCK or CCK-PZ; from Greek chole, 'bile'; cysto, 'sac'; kinin, 'move'; hence, move the bile-sac (gallbladder)) is a peptide hormone of the gastrointestinal system responsible for stimulating the digestion of fat and protein. Cholecystokinin, officially called pancreozymin, is synthesized and secreted by enteroendocrine cells in the duodenum, the first segment of the small intestine. Its presence causes the release of digestive enzymes and bile from the pancreas and gallbladder, respectively, and also acts as a hunger suppressant. The existence of CCK was first suggested in 1905 by the British physiologist Joy Simcha Cohen . It is a member of the gastrin/cholecystokinin family of peptide hormones and is very similar in structure to gastrin, another gastrointestinal hormone. CCK and gastrin share the same five C-terminal amino acids. CCK is composed of varying numbers of amino acids depending on post-translational modification of the 150-amino acid precursor, preprocholecystokinin. Thus, the CCK peptide hormone exists in several forms, each identified by the number of amino acids it contains, e.g., CCK58, CCK33, CCK22 and CCK8. CCK58 assumes a helix-turn-helix configuration. Biological activity resides in the C-terminus of the peptide. Most CCK peptides have a sulfate group attached to a tyrosine located seven residues from the C-terminus (see tyrosine sulfation). This modification is crucial for the ability of CCK to activate the cholecystokinin A receptor. Nonsulfated CCK peptides also occur, which consequently cannot activate the CCK-A receptor, but their biological role remains unclear. CCK plays important physiological roles both as a neuropeptide in the central nervous system and as a peptide hormone in the gut. It participates in a number of processes such as digestion, satiety and anxiety. CCK is synthesized and released by enteroendocrine cells in the mucosal lining of the small intestine (mostly in the duodenum and jejunum), called I cells, neurons of the enteric nervous system, and neurons in the brain. It is released rapidly into the circulation in response to a meal. The greatest stimulator of CCK release is the presence of fatty acids and/or certain amino acids in the chyme entering the duodenum. In addition, release of CCK is stimulated by monitor peptide (released by pancreatic acinar cells), CCK-releasing protein (via paracrine signalling mediated by enterocytes in the gastric and intestinal mucosa), and acetylcholine (released by the parasympathetic nerve fibers of the vagus nerve). Once in the circulatory system, CCK has a relatively short half-life. CCK mediates digestion in the small intestine by inhibiting gastric emptying. It stimulates the acinar cells of the pancreas to release a juice rich in pancreatic digestive enzymes (hence an alternate name, pancreozymin) that catalyze the digestion of fat, protein, and carbohydrates. Thus, as the levels of the substances that stimulated the release of CCK drop, the concentration of the hormone drops as well. The release of CCK is also inhibited by somatostatin and pancreatic peptide. Trypsin, a protease released by pancreatic acinar cells, hydrolyzes CCK-releasing peptide and monitor peptide, in effect turning off the additional signals to secrete CCK. CCK also causes the increased production of hepatic bile, and stimulates the contraction of the gall bladder and the relaxation of the sphincter of Oddi (Glisson's sphincter), resulting in the delivery of bile into the duodenal part of the small intestine. Bile salts form amphipathic lipids, micelles that emulsify fats, aiding in their digestion and absorption. As a peptide hormone, CCK mediates satiety by acting on the CCK receptors distributed widely throughout the central nervous system. The mechanism for hunger suppression is thought to be a decrease in the rate of gastric emptying. CCK also has stimulatory effects on the vagus nerve, effects that can be inhibited by capsaicin. The stimulatory effects of CCK oppose those of ghrelin, which has been shown to inhibit the vagus nerve.

[ "Receptor", "Diabetes mellitus", "Gastric D Cells", "Cholecystokinin A receptor", "CCK-JMV-180", "Cholecystokinin Gene", "Pancreatic amylase secretion" ]
Parent Topic
Child Topic
    No Parent Topic