The UCSD kinematic IPS solar wind boundary and its use in the ENLIL 3‐D MHD prediction model
2015
The University of California, San Diego interplanetary scintillation (IPS) time-dependent kinematic 3-D reconstruction technique has been used and expanded upon for over a decade to provide predictions of heliospheric solar wind parameters. These parameters include global reconstructions of velocity, density, and (through potential field modeling and extrapolation upward from the solar surface) radial and tangential interplanetary magnetic fields. Time-dependent results can be extracted at any solar distance within the reconstructed volume and are now being exploited as inner boundary values to drive the ENLIL 3-D MHD model in near real time. The advantage of this coupled system is that it uses the more complete physics of 3-D MHD modeling to provide an automatic prediction of coronal mass ejections and solar wind stream structures several days prior to their arrival at Earth without employing coronagraph observations. Here we explore, with several examples, the current differences between the IPS real-time kinematic analyses and those from the ENLIL 3-D MHD modeling using IPS-derived real-time boundaries. Future possibilities for this system include incorporating many different worldwide IPS stations as input to the remote sensing analysis using ENLIL as a kernel in the iterative 3-D reconstructions.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
52
References
35
Citations
NaN
KQI