Heme Impairs Alveolar Epithelial Sodium Channels Post Toxic Gas Inhalation

2020 
We previously reported that cell-free heme (CFH) is increased in the plasma of patients with acute and chronic lung injury and causes pulmonary edema in animal model of acute respiratory distress syndrome (ARDS) post inhalation of halogen gas. However, the mechanisms by which CFH causes pulmonary edema are unclear. Herein we report for the first time the presence of CFH and chlorinated lipids (formed by the interaction of halogen gas, Cl2, with plasmalogens) in the plasma of patients exposed to Cl2 gas. Ex vivo incubation of red blood cells (RBCs) with halogenated lipids caused oxidative damage to RBC cytoskeletal protein, spectrin, resulting in hemolysis and release of CFH. Patch clamp and short circuit current measurements revealed that CFH inhibited the activity of amiloride-sensitive epithelial sodium channels (ENaC) in mouse alveolar cells and trans-epithelial Na+ transport across human airway cells with EC50 of 125 nM and 500 nM, respectively. Molecular modeling identified 22 putative heme-docking sites on ENaC (energy of binding range: 86-1563 kJ/mol) with at least 2 sites within the ENaC narrow transmembrane pore, potentially capable of blocking Na+ transport across the channel. In conclusion, results suggested that CFH mediated inhibition of ENaC activity may be responsible for pulmonary edema post inhalation injury.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    5
    Citations
    NaN
    KQI
    []