The first armadillo repeat is involved in the recognition and regulation of beta-catenin phosphorylation by protein kinase CK1.

2006 
Multiple phosphorylation of β-catenin by glycogen synthase kinase 3 (GSK3) in the Wnt pathway is primed by CK1 through phosphorylation of Ser-45, which lacks a typical CK1 canonical sequence. Synthetic peptides encompassing amino acids 38–64 of β-catenin are phosphorylated by CK1 on Ser-45 with low affinity (Km ≈1 mM), whereas intact β-catenin is phosphorylated at Ser-45 with very high affinity (Km ≈200 nM). Peptides extended to include a putative CK1 docking motif (FXXXF) at 70–74 positions or a F74AA mutation in full-length β-catenin had no significant effect on CK1 phosphorylation efficiency. β-Catenin C-terminal deletion mutants up to residue 181 maintained their high affinity, whereas removal of the 131–181 fragment, corresponding to the first armadillo repeat, was deleterious, resulting in a 50-fold increase in Km value. Implication of the first armadillo repeat in β-catenin targeting by CK1 is supported in that the Y142E mutation, which mimics phosphorylation of Tyr-142 by tyrosine kinases and promotes dissociation of β-catenin from α-catenin, further improves CK1 phosphorylation efficiency, lowering the Km value to <50 nM, approximating the physiological concentration of β-catenin. In contrast, α-catenin, which interacts with the N-terminal region of β-catenin, prevents Ser-45 phosphorylation of CK1 in a dose-dependent manner. Our data show that the integrity of the N-terminal region and the first armadillo repeat are necessary and sufficient for high-affinity phosphorylation by CK1 of Ser-45. They also suggest that β-catenin association with α-catenin and β-catenin phosphorylation by CK1 at Ser-45 are mutually exclusive.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    35
    Citations
    NaN
    KQI
    []