Out-of-plane magnetic anisotropy in columnar grown Fe–Ni films

2014 
Abstract Polycrystalline thin films usually present magnetic anisotropy resulting from a conjunction of textures, residual stresses, surface effects, and magnetic dipole distribution. The shape anisotropy, which is caused by the magnetic dipole distribution, is dominant in most of the cases, and it forces the occurrence of in-plane easy axes for the magnetization. Contrary to this common expectation, we have found predominant out-of-plane easy axes in a series of Fe–Ni thin films produced by DC sputtering. Films with different thicknesses, from 40 to 1000 nm, and different deposition temperatures have been tested and show similar results. These unusual characteristics are results of a particular columnar structure formed during the films growth. The magnetic characterization of the samples has been done by Mossbauer spectroscopy, magnetometry, and ferromagnetic resonance. The unusual anisotropy observed is not believed to be uniform along the film thickness. This interpretation comes from the comparison of the experimental results with hysteresis obtained by micromagnetic simulations. Five distinct configurations for the anisotropies have been simulated for this comparison.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    8
    Citations
    NaN
    KQI
    []