Enhanced arsenite removal from water by radially porous Fe-chitosan beads: Adsorption and H2O2 catalytic oxidation

2019 
Abstract Although Fe-chitosan adsorbents are attractive for removing arsenite from water, the practical applications of these granular adsorbents are mainly limited by slow adsorption kinetics. In this study, radially porous Fe-chitosan beads (P/Fe-CB) were prepared using freeze-casting technique. The P/Fe-CB particles possess radially aligned micron-sized tunnels from the surface to the inside as well as excellent acid resistance. Kinetic studies show that the adsorption equilibrium time of P/Fe-CB to 0.975 mg/L As(III) (within 240 min) is considerably shorter than that of compact Fe-chitosan beads (over 600 min). The maximal adsorption capacity of P/Fe-CB for As(III) is 52.7 mg/g. It can work effectively in a wide pH range from 3 to 9, and the coexisting sulfate, carbonate, silicate and humic acid have no significant effect on As(III) removal. The addition of H 2 O 2 can further accelerate and promote the As(III) removal except at high pH (11) and phosphate concentration (50 mg/L). The fixed-bed experiments demonstrate that the P/Fe-CB column can effectively treat about 3000 bed volume (BV) of simulated As(III)-containing groundwater to meet the drinking water standard ( 2 O 2 to a great extent.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    32
    Citations
    NaN
    KQI
    []