Local Josephson vortex generation and manipulation with a Magnetic Force Microscope

2019 
Josephson vortices play an essential role in superconducting quantum electronics devices. Often seen as purely conceptual topological objects, 2π-phase singularities, their observation and manipulation are challenging. Here we show that in Superconductor—Normal metal—Superconductor lateral junctions Josephson vortices have a peculiar magnetic fingerprint that we reveal in Magnetic Force Microscopy (MFM) experiments. Based on this discovery, we demonstrate the possibility of the Josephson vortex generation and manipulation by the magnetic tip of a MFM, thus paving a way for the remote inspection and control of individual nano-components of superconducting quantum circuits. Josephson vortices (JVs) play an important role in superconducting quantum devices, but they remain difficult to be observed and manipulated. Here, Dremov et al. report magnetic fingerprint of JVs in magnetic force microscopy experiments, which paves a way to generate and control JVs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    13
    Citations
    NaN
    KQI
    []