A gravitational singularity, spacetime singularity or simply singularity is a location in spacetime where the gravitational field of a celestial body is predicted to become infinite by general relativity in a way that does not depend on the coordinate system. The quantities used to measure gravitational field strength are the scalar invariant curvatures of spacetime, which includes a measure of the density of matter. Since such quantities become infinite within the singularity, the laws of normal spacetime cannot exist. A gravitational singularity, spacetime singularity or simply singularity is a location in spacetime where the gravitational field of a celestial body is predicted to become infinite by general relativity in a way that does not depend on the coordinate system. The quantities used to measure gravitational field strength are the scalar invariant curvatures of spacetime, which includes a measure of the density of matter. Since such quantities become infinite within the singularity, the laws of normal spacetime cannot exist. Gravitational singularities are mainly considered in the context of general relativity, where density apparently becomes infinite at the center of a black hole, and within astrophysics and cosmology as the earliest state of the universe during the Big Bang. Physicists are undecided whether the prediction of singularities means that they actually exist (or existed at the start of the Big Bang), or that current knowledge is insufficient to describe what happens at such extreme densities. General relativity predicts that any object collapsing beyond a certain point (for stars this is the Schwarzschild radius) would form a black hole, inside which a singularity (covered by an event horizon) would be formed. The Penrose–Hawking singularity theorems define a singularity to have geodesics that cannot be extended in a smooth manner. The termination of such a geodesic is considered to be the singularity. The initial state of the universe, at the beginning of the Big Bang, is also predicted by modern theories to have been a singularity. In this case the universe did not collapse into a black hole, because currently-known calculations and density limits for gravitational collapse are usually based upon objects of relatively constant size, such as stars, and do not necessarily apply in the same way to rapidly expanding space such as the Big Bang. Neither general relativity nor quantum mechanics can currently describe the earliest moments of the Big Bang, but in general, quantum mechanics does not permit particles to inhabit a space smaller than their wavelengths. Many theories in physics have mathematical singularities of one kind or another. Equations for these physical theories predict that the ball of mass of some quantity becomes infinite or increases without limit. This is generally a sign for a missing piece in the theory, as in the ultraviolet catastrophe, re-normalization, and instability of a hydrogen atom predicted by the Larmor formula. Some theories, such as the theory of loop quantum gravity, suggest that singularities may not exist. This is also true for such classical unified field theories as the Einstein–Maxwell–Dirac equations. The idea can be stated in the form that due to quantum gravity effects, there is a minimum distance beyond which the force of gravity no longer continues to increase as the distance between the masses becomes shorter, or alternatively that interpenetrating particle waves mask gravitational effects that would be felt at a distance. There are different types of singularities, each with different physical features which have characteristics relevant to the theories from which they originally emerged, such as the different shape of the singularities, conical and curved. They have also been hypothesized to occur without Event Horizons, structures which delineate one spacetime section from another in which events cannot affect past the horizon; these are called naked. A conical singularity occurs when there is a point where the limit of every diffeomorphism invariant quantity is finite, in which case spacetime is not smooth at the point of the limit itself. Thus, spacetime looks like a cone around this point, where the singularity is located at the tip of the cone. The metric can be finite everywhere coordinate system is used. An example of such a conical singularity is a cosmic string and a Schwarzschild black hole.