NADPH-Dependent Covalent Binding of [3H]Paroxetine to Human Liver Microsomes and S-9 Fractions: Identification of an Electrophilic Quinone Metabolite of Paroxetine

2007 
The primary pathway of clearance of the methylenedioxyphenyl-containing compound and selective serotonin reuptake inhibitor paroxetine in humans involves P450 2D6-mediated demethylenation to a catechol intermediate. The process of demethylenation also results in the mechanism-based inactivation of the P450 isozyme. While the link between P450 2D6 inactivation and pharmacokinetic interactions of paroxetine with P450 2D6 substrates has been firmly established, there is a disconnect in terms of paroxetine’s excellent safety record despite the potential for bioactivation. In the present study, we have systematically assessed the NADPH-dependent covalent binding of [3H]paroxetine to human liver microsomes and S-9 preparations in the absence and presence of cofactors of the various phase II drug-metabolizing enzymes involved in the downstream metabolism/detoxification of the putative paroxetinecatechol intermediate. Incubation of [3H]paroxetine with human liver microsomes and S-9 preparations resulted in irrev...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    65
    Citations
    NaN
    KQI
    []