Demonstrating the critical role of solvation in supported Ti and Nb epoxidation catalysts via vapor-phase kinetics

2020 
Catalytic oxidation of hydrocarbons with hydrogen peroxide (H2O2) has been of the utmost importance for several decades. The vast majority of studies have been performed in the condensed phase, even though condensed phases introduce complex solvent effects and can promote the leaching of active sites. In response, we have built a custom reactor system to understand H2O2 activation and selective oxidation in the vapor-phase. In this report, we study the epoxidation of cyclohexene with H2O2 over four Lewis-acidic metal oxide catalysts: Ti and Nb grafted on SiO2 and on the Zr based metal–organic framework, NU-1000. The M-SiO2 materials are highly selective to the formation of epoxides and diols, as they can be in the condensed phase, while the NU-1000 based materials are far more prone to overoxidation to CO2, which appears to be connected to their strong reactant adsorption. Apparent activation energies are calculated for all materials when operating in the same kinetic regime, and the heats of cyclohexene ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    6
    Citations
    NaN
    KQI
    []