Defining the Optimal Requirements for the Liquid Indium Microelectric Propulsion System

2015 
Recent technology advancements in microelectric propulsion will enable the next generation of small spacecraft to perform trajectory and attitude maneuvers with significant ΔV requirements, provide thrust over long mission durations, and replace reaction wheels for attitude control. These advancements will open up the class of mission architectures achievable by small spacecraft to include formation flying, proximity operations, and precision pointing missions in both low Earth orbit and interplanetary destinations. The goal of this study is to establish the optimal performance parameters for future microelectric propulsion technology that are applicable to a broad range of flight demonstration platforms (for example, dedicated 3- to 12-unit CubeSats to evolved expendable launch vehicle secondary payload adaptor-class spacecraft) for a variety of applications, including low Earth orbit and Earth escape orbit transfers, travel to interplanetary destinations, hover and drag makeup missions, and performing r...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    1
    Citations
    NaN
    KQI
    []