The mechanism of pantothenate transport by rat liver parenchymal cells in primary culture.
1985
The mechanism of pantothenate transport across the plasma membrane was investigated with initial velocity studies of [14C]pantothenate uptake and efflux in rat liver parenchymal cells maintained in primary culture. At 116 mM sodium, double-reciprocal plots of the initial velocity of uptake versus [pantothenate] were linear from 0.3 to 36.5 microM pantothenate and gave an apparent Km,pant of 11 +/- 2 microM. The rate of pantothenate uptake at 0 [sodium] was about 14% of the rate at 116 mM sodium, and the reciprocal of the apparent Km,pant was a linear function of [sodium]. Vmax obtained by extrapolation to infinite [pantothenate] was independent of [sodium]. Ouabain, gramicidin D, cyanide, azide, and 2,4-dinitrophenol inhibited uptake, but preloading cells with pantothenate did not. Pantothenate derivatives or carboxylic acids were only weak inhibitors of uptake. Efflux was measured in cells preloaded with [14C]pantothenate. The apparent Km for efflux was 85 +/- 29 microM, and the rate of efflux was unaffected by addition of pantothenate, sodium, ouabain, gramicidin D, or 2,4-dinitrophenol to the external medium. These features are consistent with a mechanism for pantothenate transport in which sodium and pantothenate are cotransported in a 1:1 ratio on a carrier highly specific for pantothenate; sodium decreases the apparent Km for pantothenate, and a sodium-carrier complex forms only on the intracellular side of the membrane.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
26
References
11
Citations
NaN
KQI