Epigenetic regulations follow cell cycle progression during differentiation of human pluripotent stem cells.

2020 
Most mammalian stem cells undergo cellular division during their differentiation to produce daughter cells with a new cellular identity. However, the cascade of epigenetic events and molecular mechanisms occurring between successive cell divisions upon differentiation have not yet been described in detail due to technical limitations. Here, we address this question by taking advantage of the Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) reporter to develop a culture system allowing the differentiation of human Embryonic Stem Cells (hESCs) synchronised for their cell cycle. Using this approach, we have assessed the epigenome and transcriptome dynamics during the first two divisions leading to definitive endoderm. We first observed that transcription of key markers of differentiation occurs before division suggesting that differentiation is initiated during the progression of cell cycle. Furthermore, ATAC-seq shows a major decrease in chromatin accessibility after pluripotency exit indicating that the first event of differentiation is the inhibition of alternative cell fate. In addition, using digital genomic footprinting we identified novel cell cycle-specific transcription factors with regulatory potential in endoderm specification. Of particular interest, Activator protein 1 (AP-1) controlled p38/MAPK signalling seems to be necessary for blocking endoderm shifting cell fate toward mesoderm lineage. Finally, histone modifications analyses suggest a temporal order between different marks. We can also conclude that enhancers are dynamically and rapidly established / decommissioned between different cell cycle upon differentiation. Overall, these data not only reveal key the successive interplays between epigenetic modifications during differentiation but also provide a valuable resource to investigate novel mechanisms in germ layer specification.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    85
    References
    1
    Citations
    NaN
    KQI
    []