Betulinic acid attenuates liver fibrosis by inducing autophagy via the mitogen-activated protein kinase/extracellular signal-regulated kinase pathway

2019 
The present study was designed to investigate the effects of betulinic acid on human hepatic stellate cells in vitro and C57BL/6 mice in vivo, as well as the signaling pathways involved. In this study, we explored the effects of betulinic acid on expression of alpha smooth muscle actin and autophagy-related proteins. Betulinic acid reduced pathological damage associated with liver fibrosis, as well as serum platelet-derived growth factor and serum hydroxyproline levels. Furthermore, betulinic acid downregulated the expression of alpha smooth muscle actin and type I collagen in mouse liver and upregulated the expression of microtubule-associated protein light chain 3B and autophagy-related gene 7 at the gene and protein levels. LC3II expression was increased and alpha smooth muscle actin expression was decreased in betulinic acid-treated hepatic stellate cells. Interventions with bafilomycin A1 and mCherry-GFP-LC3 adenoviruses promoted the formation of autophagosomes in hepatic stellate cells and the development of autophagic flow. Our study found that mitogen-activated protein kinase/extracellular signal-regulated kinase may be involved in the effects of betulinic acid on liver fibrosis. The present study suggests that betulinic acid has anti-hepatic fibrosis activity by inducing autophagy and could serve as a promising new agent for treating hepatic fibrosis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    8
    Citations
    NaN
    KQI
    []