Experimental investigation of Caenorhabditis elegans motility using micro-PIV

2020 
Caenorhabditis elegans is a microscopic nematode used extensively as a model organ- ism in studies of neuromuscular function and neurodegenerative disorders. A mutation in mir-1 affects signalling at the neuromuscular junction. We investigate the effect of this mutation on the propulsive power exerted by nematodes as they grow in size with age. We compare the motility of wild-type and mir-1(gk276) mutant nematodes in a Newto- nian fluid using a two-component, two dimensional (2C-2D) Digital Microscopic Particle Image Velocimetry (μ-PIV) technique. Beating amplitudes of the head and tail, the wave- length of undulatory waves and the swimming speed scale linearly with size in both the wild-type and mutant strains. The beating frequency is independent of size or position along the body. Differences in the magnitudes of these kinematic parameters between the two strains, however, grow systematically with age. The swimming speed scales linearly with the wave speed of the neuromuscular undulation in both nematode strains with a conserved ratio. The magnitude of mean power and mean local fluid circulation in the mutant is significantly lower compared to those of the wild-type animals of the same age. This indicates that a mutation in mir-1 adversely affects motility in C. elegans.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    0
    Citations
    NaN
    KQI
    []