In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. In acoustics, a beat is an interference pattern between two sounds of slightly different frequencies, perceived as a periodic variation in volume whose rate is the difference of the two frequencies. When tuning instruments that can produce sustained tones, beats can be readily recognized. Tuning two tones to a unison will present a peculiar effect: when the two tones are close in pitch but not identical, the difference in frequency generates the beating. The volume varies like in a tremolo as the sounds alternately interfere constructively and destructively. As the two tones gradually approach unison, the beating slows down and may become so slow as to be imperceptible. As the two tones get further apart, their beat frequency starts to approach the range of human pitch perception, the beating starts to sound like a note, and a combination tone is produced. This combination tone can also be referred to as a missing fundamental, as the beat frequency of any two tones is equivalent to the frequency of their implied fundamental frequency. This phenomenon is best known in acoustics or music, though it can be found in any linear system: 'According to the law of superposition, two tones sounding simultaneously are superimposed in a very simple way: one adds their amplitudes'. If a graph is drawn to show the function corresponding to the total sound of two strings, it can be seen that maxima and minima are no longer constant as when a pure note is played, but change over time: when the two waves are nearly 180 degrees out of phase the maxima of one wave cancel the minima of the other, whereas when they are nearly in phase their maxima sum up, raising the perceived volume. It can be proven (see List of trigonometric identities) that the envelope of the maxima and minima form a wave whose frequency is half the difference between the frequencies of the two original waves. Consider two sine waves of unit amplitude: If the two original frequencies are quite close (for example, a difference of approximately twelve hertz), the frequency of the cosine of the right side of the expression above, that is f1 − f2/2, is often too low to be perceived as an audible tone or pitch. Instead, it is perceived as a periodic variation in the amplitude of the first term in the expression above. It can be said that the lower frequency cosine term is an envelope for the higher frequency one, i.e. that its amplitude is modulated. The frequency of the modulation is f1 + f2/2, that is, the average of the two frequencies. It can be noted that every second burst in the modulation pattern is inverted. Each peak is replaced by a trough and vice versa. However, because the human ear is not sensitive to the phase of a sound, only its amplitude or intensity, only the magnitude of the envelope is heard. Therefore, subjectively, the frequency of the envelope seems to have twice the frequency of the modulating cosine, which means the audible beat frequency is: