Observation of inconsistent carbon isotope compositions of chlorine-isotopologue pairs of individual organochlorines by gas chromatography-high resolution mass spectrometry

2019 
This study investigated the consistency/inconsistency of carbon isotope compositions of chlorine-isotopologue pairs, e.g., 12C235Cl4 vs. 12C13C35Cl4, of individual organochlorines including two chloroethylenes, three polychlorinated biphenyls, methyl-triclosan and hexachlorobenzene. The raw carbon isotope ratios were measured by gas chromatography-high resolution mass spectrometry. Data simulations in terms of background subtraction, background addition, dual 13C-atoms substitution, deuterium substitution and hydrogen-transfer were conducted to confirm the validity of measured carbon isotope ratios and their differences. Inconsistent carbon isotope ratios derived from chlorine-isotopologue pairs of individual organochlorines were observed, and the isotopologues of each organochlorine were thus inferred to be non-randomly distributed. Mechanistic interpretation for these findings was tentatively proposed according to a basic principle in clumped-isotope geochemistry, reaction thermodynamics and kinetics, along with isotope effects occurring on electron ionization mass spectrometry. This study sheds light on the actual carbon isotope compositions of chlorine-isotopologue pairs of organochlorines, and yields new insights into the real distributions of carbon and chlorine isotopologues. The inconsistent carbon isotope compositions of chlorine-isotopologue pairs are anticipated to benefit the exploration of formation conditions and source identification of organochlorine pollutants.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    0
    Citations
    NaN
    KQI
    []