The Role of p38 Mitogen-Activated Protein Kinase in Regulating Interleukin-10 Gene Expression in Burkitt's Lymphoma Cell Lines

2007 
In malignant B lymphoma cells interleukin-10 (IL-10) expression is frequently upregulated. This effect is thought to support to the malignant transformation of these cells and to be a potential target for pharmacotherapy. To define better the mechanism for upregulation of the IL-10 gene, we tested the association between IL-10 and p38 mitogen-activated protein kinase (MAPK) in several Epstein-Barr virus (EBV) infected and non-infected Burkitt's lymphoma (BL) cell lines. The all BL cell lines expressed IL-10 and IL-10 receptor mRNAs, and produced IL-10. p38 MAPK was constitutively phosphorylated in the cytoplasm of the BL cell lines. We further analyzed molecular effects of p38 MAPK on IL-10 expression in Akata cells. Exogenous IL-10 lead rapidly to phosphorylation of Jak1 and Tyk2 as transducers of signals of IL-10, and promoted growth of Akata cells in a dose-dependent manner. The phosphorylation of cytoplasmic p38 MAPK in Akata cells was reduced by the serine/threonine kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine (H7). A specific inhibitor of p38 MAPK, SB203580, blocked simultaneously STAT3 DNA-binding activity, and IL-10 mRNA expression, IL-10 production, and then the cell growth was inhibited. These results indicate that the p38 MAPK pathway is functionally linked to IL-10 gene expression and supports the view that the constitutive activation of cytoplasmic p38 MAPK in BL cells is a step in the upregulation of IL-10 gene expression and lymphomagenesis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    9
    Citations
    NaN
    KQI
    []