Effects of material and drilling uncertainties on artificial ground freezing of cement-admixed soils

2017 
The artificial ground freezing method can be used jointly with the deep cement mixing method during break-in and break-out processes of shield machines in a tunnel shaft. The frozen ground can fully cut off groundwater seepage, thus ensuring a watertight working platform. Cement-admixed soils can restrict frost heave and thaw-induced settlement because of the decreased permeability. Both methods can also enhance mechanical strength of the soil to enable construction to proceed. Two main sources of heterogeneity are likely to influence the freezing effect: spatial variability in in situ water content in natural soil and spatial variability in binder concentration in cement-admixed soils. Furthermore, positioning error when installing freeze pipes can also affect freezing efficiency. This study simulates in situ water content and binder concentration as Gaussian random fields, whereby variations in the thermophysical properties are estimated. Positioning error is also assessed by prescribing an incline angl...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    17
    Citations
    NaN
    KQI
    []