language-icon Old Web
English
Sign In

Frost heaving

Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated into the soil (the freezing front or freezing boundary). Ice growth requires a water supply that delivers water to the freezing front via capillary action in certain soils. The weight of overlying soil restrains vertical growth of the ice and can promote the formation of lens-shaped areas of ice within the soil. Yet the force of one or more growing ice lenses is sufficient to lift a layer of soil, as much as 1 foot (0.30 metres) or more. The soil through which water passes to feed the formation of ice lenses must be sufficiently porous to allow capillary action, yet not so porous as to break capillary continuity. Such soil is referred to as 'frost susceptible'. The growth of ice lenses continually consumes the rising water at the freezing front. Differential frost heaving can crack road surfaces—contributing to springtime pothole formation—and damage building foundations. Frost heaves may occur in mechanically refrigerated cold-storage buildings and ice rinks. Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated into the soil (the freezing front or freezing boundary). Ice growth requires a water supply that delivers water to the freezing front via capillary action in certain soils. The weight of overlying soil restrains vertical growth of the ice and can promote the formation of lens-shaped areas of ice within the soil. Yet the force of one or more growing ice lenses is sufficient to lift a layer of soil, as much as 1 foot (0.30 metres) or more. The soil through which water passes to feed the formation of ice lenses must be sufficiently porous to allow capillary action, yet not so porous as to break capillary continuity. Such soil is referred to as 'frost susceptible'. The growth of ice lenses continually consumes the rising water at the freezing front. Differential frost heaving can crack road surfaces—contributing to springtime pothole formation—and damage building foundations. Frost heaves may occur in mechanically refrigerated cold-storage buildings and ice rinks. Needle ice is essentially frost heaving that occurs at the beginning of the freezing season, before the freezing front has penetrated very far into the soil and there is no soil overburden to lift as a frost heave. According to Beskow, Urban Hjärne (1641–1724) described frost effects in soil in 1694. By 1930, Stephen Taber (1882–1963), head of the Department of Geology at the University of South Carolina (Columbia, South Carolina), had disproved the hypothesis that frost heaving results from molar volume expansion with freezing of water already present in the soil prior to the onset of subzero temperatures, i.e. with little contribution from migration of water within the soil. Since the molar volume of water expands by about 9% as it changes phase from water to ice at its bulk freezing point, 9% would be the maximum expansion possible owing to molar volume expansion, and even then only if the ice were rigidly constrained laterally in the soil so that the entire volume expansion had to occur vertically. Ice is unusual among compounds because it increases in molar volume from its liquid state, water. Most compounds decrease in volume when changing phase from liquid to solid. Taber showed that the vertical displacement of soil in frost heaving can be significantly greater than that due to molar volume expansion. Taber demonstrated that liquid water migrates towards the freeze line within soil. He showed that other liquids, such as benzene, which contracts when it freezes, also produce frost heave. This excluded molar volume changes as the dominant mechanism for vertical displacement of freezing soil. His experiments further demonstrated the development of ice lenses inside columns of soil that were frozen by cooling the upper surface only, thereby establishing a temperature gradient. The dominant cause of soil displacement in frost heaving is the development of ice lenses. During frost heave, one or more soil-free ice lenses grow, and their growth displaces the soil above them. These lenses grow by the continual addition of water from a groundwater source that is lower in the soil and below the freezing line in the soil. The presence of frost-susceptible soil with a pore structure that allows capillary flow is essential to supplying water to the ice lenses as they form. Owing to the Gibbs–Thomson effect of the confinement of liquids in pores, water in soil can remain liquid at a temperature that is below the bulk freezing point of water. Very fine pores have a very high curvature, and this results in the liquid phase being thermodynamically stable in such media at temperatures sometimes several tens of degrees below the bulk freezing point of the liquid. This effect allows water to percolate through the soil towards the ice lens, allowing the lens to grow. Another water-transport effect is the preservation of a few molecular layers of liquid water on the surface of the ice lens, and between ice and soil particles. Faraday reported in 1860 on the unfrozen layer of premelted water. Ice premelts against its own vapor, and in contact with silica.

[ "Frost (temperature)", "Frost", "Soil water", "Geomorphology", "Meteorology", "Ice lens", "Frost boil", "Ice segregation", "Ground frost", "Frost line" ]
Parent Topic
Child Topic
    No Parent Topic