Modulation of material properties using Nanoelectrochemistry : from active plasmonic devices and photovoltaic systems to ultrathin electroactive layers

2011 
Over the last twenty years, a continuous increase in plastic electronics has lead to a revolution in lifestyle. In the first chapter, we will discuss hybrid conducting polymer/plasmonic nanoparticle Systems and demonstrate that optical answers of plasmonic structures can not only be reversibly switched according to conducting polymer electronic state. Furthermore, the polymer type induces distinct optical answers, offering tremendous possibilities for further tailoring of optical properties. The second chapter is dedicated to ultrathin electroactive film generation from diazonium salt electroreduction. The first part presents successful diazonium salt derived film deposition without core benzene unit. The second part is devoted to the influence of the thiophene derivative, attached to the core benzene, on diazonium salt generation and electronic properties of gratted films. The third chapter demonstrates that a bottom-up approach can be used to further elongate oligomer chains by overgrafting monomeric compounds. By that, film properties are modified according to the monomer used, enlarging possibilities of distinct electroactive thin film design. In the fourth chapter, we investigate dye sensitized solar cells (DSSC) or Gratzel type cells with regard to the establishment of low cost plasmonic DSSC. By that, we hope to increase efficiencies of the basic System. In a first time, cell setup will be optimized to allow comparison with literature and then, the redox mediator will be replaced in order to optimize the System for subsequent gold incorporation. Finally, several strategies for gold deposition and first tests in cell setup will be demonstrated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []