Interfacial roughness and temperature effects on exchange bias properties in coupled ferromagnetic/antiferromagnetic bilayers

2012 
Abstract Monte Carlo simulations have been used to study the relationship between the exchange bias properties and the interface roughness in coupled ferromagnetic/antiferromagnetic (FM/AFM) films of classical Heisenberg spins. It is shown that the variation of the exchange bias field versus the AFM anisotropy strongly depends on the FM/AFM interface. Unlike the flat interface, a non-monotonic dependence is observed for the roughest FM/AFM interface. This is explained by canted magnetic configurations at the FM/AFM interface, which appear after the first reversal due to the magnetic frustration. The temperature dependence of the exchange field is also dependent on the roughness. While the exchange field is roughly constant for the flat interface, a decrease is observed for the roughest interface as the temperature increases. This has been interpreted as a significant decrease of the effective coupling between the FM and the AFM due to the disordering of the moments at the FM/AFM interface because of the combination of magnetic frustration and temperature activation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    21
    Citations
    NaN
    KQI
    []