Linear mode photon counting with the noiseless gain HgCdTe e-avalanche photodiode

2014 
A linear mode photon counting focal plane array using HgCdTe mid-wave infrared (MWIR) cutoff electron initiated avalanche photodiodes (e-APDs) has been designed, fabricated, and characterized. The broad spectral range (0.4 to 4.3 μm) is unique among photon counters, making this a “first of its kind” system spanning the visible to the MWIR. The low excess noise [ F(M )≈ 1 ] of the e-APDs allows for robust photon detection while operating at a stable linear avalanche gain in the range of 500–1000. The readout integrated circuit (ROIC) design included a very high gain-bandwidth product resistive transimpedance amplifier ( 3×10 13   Ω-Hz ) and a 4 ns output digital pulse width comparator. The ROIC had 16 high-bandwidth analogs and 16 low-voltage differential signaling digital outputs. The 2×8 array was integrated into an LN2 Dewar with a custom leadless chip carrier and daughter board design that preserved high-bandwidth analog and digital signal integrity. The 2×8 e-APD arrays were fabricated on 4.3 μm cutoff HgCdTe and operated at 84 K. The measured dark currents were approximately 1 pA at 13 V bias where the measured avalanche photodiode gain was 500. This translates to a predicted dark current induced dark count rate of less than 20 KHz. Single photon detection was achieved with a photon pulse signal-to-noise ratio of 13.7 above the amplifier noise floor. A photon detection efficiency of 50% was measured at a photon background limited false event rate of about 1 MHz. The measured jitter was in the range of 550–800 ps. The demonstrated minimum time between distinguishable events was less than 10 ns.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    14
    Citations
    NaN
    KQI
    []