language-icon Old Web
English
Sign In

Transimpedance amplifier

In electronics, a transimpedance amplifier, (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers. In electronics, a transimpedance amplifier, (TIA) is a current to voltage converter, almost exclusively implemented with one or more operational amplifiers. The TIA can be used to amplify the current output of Geiger–Müller tubes, photo multiplier tubes, accelerometers, photo detectors and other types of sensors to a usable voltage. Current to voltage converters are used with sensors that have a current response that is more linear than the voltage response. This is the case with photodiodes where it is not uncommon for the current response to have better than 1% nonlinearity over a wide range of light input. The transimpedance amplifier presents a low impedance to the photodiode and isolates it from the output voltage of the operational amplifier. In its simplest form a transimpedance amplifier has just a large valued feedback resistor, Rf. The gain of the amplifier is set by this resistor and because the amplifier is in an inverting configuration, has a value of -Rf. There are several different configurations of transimpedance amplifiers, each suited to a particular application. The one factor they all have in common is the requirement to convert the low-level current of a sensor to a voltage. The gain, bandwidth, as well as current and voltage offsets change with different types of sensors, requiring different configurations of transimpedance amplifiers. In the circuit shown in figure 1 the photodiode is connected between ground and the inverting input of the op-amp. The other input of the op-amp is also connected to ground. This provides a low-impedance load for the photodiode, which keeps the photodiode voltage low. The photodiode is operating in photovoltaic mode with no external bias. The high gain of the op-amp keeps the photodiode current equal to the feedback current through Rf. The input offset voltage due to the photodiode is very low in this self-biased photovoltaic mode. This permits a large gain without any large output offset voltage. This configuration is used with photodiodes that are illuminated with low light levels and require a lot of gain.

[ "Differential amplifier", "Input offset voltage", "Direct-coupled amplifier", "Operational transconductance amplifier", "Operational amplifier" ]
Parent Topic
Child Topic
    No Parent Topic