Tuning Plasmon Resonance of In2O3 Nanocrystals throughout the Mid-Infrared Region by Competition between Electron Activation and Trapping
2017
Controlling plasmonic properties of aliovalently doped semiconductor nanocrystals in mid-infrared (MIR) spectral region is of a particular current interest, because of their potential application in heat-responsive devices and near-field enhanced spectroscopies. However, a lack of detailed understanding of the correlations among the electronic structure of the host lattice, dopant ions, and surface properties hampers the development of MIR-tunable plasmonic nanocrystals (NCs). In this article, we report the colloidal synthesis and spectroscopic properties of two new plasmonic NC systems based on In2O3, antimony- and titanium-doped In2O3 NCs, and comparative investigation of their electronic structure using the combination of the Drude–Lorenz model and density functional theory. The localized surface plasmon resonances (LSPRs) lie at lower energies and have smaller bandwidths for Ti-doped than for Sb-doped In2O3 NCs with similar doping levels, indicating lower free electron density. Surprisingly, the Fermi...
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
58
References
34
Citations
NaN
KQI