Genome Editing Strategies Towards Enhancement of Rice Disease Resistance

2021 
Abstract The emerging pests and phytopathogens have reduced the crop yield and quality, which has threatened the global food security. Traditional breeding methods, molecular marker-based breeding approaches and use of genetically modified crops have played a crucial role in strengthening the food security worldwide. However, their usages in crop improvement have been highly limited due to multiple caveats. Genome editing tools like transcriptional activator-like effector nucleases and clustered regularly interspaced short palindromic repeats (CRISPR)-associated endonuclease Cas9 (CRISPR/Cas9) have effectively overcome limitations of the conventional breeding methods and are being widely accepted for improvement of crops. Among the genome editing tools, the CRISPR/Cas9 system has emerged as the most powerful tool of genome editing because of its efficiency, amicability, flexibility, low cost and adaptability. Accumulated evidences indicate that genome editing has great potential in improving the disease resistance in crop plants. In this review, we offered a brief introduction to the mechanisms of different genome editing systems and then discussed recent developments in CRISPR/Cas9 system-based genome editing towards enhancement of rice disease resistance by different strategies. This review also discussed the possible applications of recently developed genome editing approaches like CRISPR/Cas12a (formerly known as Cpf1) and base editors for enhancement of rice disease resistance.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    99
    References
    2
    Citations
    NaN
    KQI
    []