Short Communication Plasmonics-based SERS nanobiosensor for homogeneous nucleic acid detection

2015 
Developing a simple and efficient nucleic acid detection technology is essential for clinical diagnostics. Here, we describe a new conceptually simple and selective “turn on” plasmonics-based nanobiosensor, which integrates non-enzymatic DNA strand-displacement hybridization for specific nucleic acid target identification with surface-enhanced Raman scattering (SERS) detection. This SERS nanobiosensor is a target label-free, and rapid nanoparticle-based biosensing system using a homogeneous assay format that offers a simple and efficient tool for nucleic acid diagnostics. Our results showed that the nanobiosensor provided a limit of detection of ~ 0.1 nM (200 amol) in the current bioassay system, and exhibited high specificity for single nucleotide mismatch discrimination. From the Clinical Editor: Surface-enhanced Raman scattering (SERS) is a sensitive technique that enhances Raman scattering by molecules adsorbed on rough metal surfaces. The enhancement means that the technique may even detect single molecules. In this article, the authors describe a simple and efficient nucleic acid detection technology using SERS, with "OFF-to-ON" signal switch upon nucleic acid target identification and capture, which provides high sensitivity and specificity for single nucleotide mismatch discrimination. This new technology will be most welcomed in clinical diagnostics.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []