Process monitoring and control with tunable wavelength overlay coupled with simulation-to-measurement analysis

2019 
As semiconductor technology nodes keep shrinking, ever-tightening on-product overlay (OPO) budgets coupled with continuous process development and improvement make it critical to have a robust and accurate metrology setup. Process monitoring and control is becoming increasingly important to achieve high yield production. In recently introduced advanced overlay (OVL) systems, a supercontinuum laser source is applied to facilitate the collection of overlay spectra to increase measurement stability. In this paper, an analysis methodology has been proposed to couple the measured overlay spectra with overlay simulation to extract exact process information from overlay spectra. This paper demonstrates the ability to use overlay spectra to capture and quantify process variation, which in turn can be used to calibrate the simulation stacks used to create the SCOL (scatterometry-based overlay) and AIM overlay metrology targets, and can be fed into the fab for process monitoring and improvement.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    4
    References
    1
    Citations
    NaN
    KQI
    []