Relaxed core projector-augmented-wave method

2006 
We extend the full-potential projector-augmented-wave method beyond the frozen core approximation, i.e., include the self-consistent optimization of the core charge density, in such a manner that the valence wave functions remain orthogonal to the core. The method consists of an on-the-fly repseudization of the all-electron problem, solving for the self-consistent core charge density within a spherical approximation. The key ideas in our procedure are to keep the projector functions fixed throughout the electronic minimization and to derive the new pseudopartial waves from these original projector functions, at each step of the electronic minimization procedure. Results of relaxed core calculations for atomic interconfigurational energies, structural energy differences between bulk phases of Fe, atomization energies of a subset of Pople’s G2-1 set, and the Rh 3d surface core level shifts for the (3×3)-Rh(111) surface at 1∕3 CO coverage are presented.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    21
    References
    68
    Citations
    NaN
    KQI
    []