A two-way time of flight ranging scheme for wireless sensor networks

2011 
Relative ranging between Wireless Sensor Network (WSN) nodes is considered to be an important requirement for a number of distributed applications. This paper focuses on a two-way, time of flight (ToF) technique which achieves good accuracy in estimating the point-to-point distance between two wireless nodes. The underlying idea is to utilize a two-way time transfer approach in order to avoid the need for clock synchronization between the participating wireless nodes. Moreover, by employing multiple ToF measurements, sub-clock resolution is achieved. A calibration stage is used to estimate the various delays that occur during a message exchange and require subtraction from the initial timed value. The calculation of the range between the nodes takes place on-node making the proposed scheme suitable for distributed systems. Care has been taken to exclude the erroneous readings from the set of measurements that are used in the estimation of the desired range. The two-way ToF technique has been implemented on commercial off-the-self (COTS) devices without the need for additional hardware. The system has been deployed in various experimental locations both indoors and outdoors and the obtained results reveal that accuracy between 1 m RMS and 2.5 m RMS in line-of-sight conditions over a 42 m range can be achieved.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    21
    Citations
    NaN
    KQI
    []