Characterization of optical proximity correction features
2001
One-dimensional linewidth alone is an inadequate metric for low-k1 lithography. Critical Dimension metrology and analysis have historically focused on 1-dimensional effects but with low-k1 lithography is has increasingly been found that the process window for acceptable imaging of the full 2D structure is more limited than the process window for CDs alone. The shape and area of the feature have become as critical to the proper patterning as the width. The measurement and analysis of Critical Shape Difference (CSD) of patterned features must be an integral part of process development efforts. Adoption of optical proximity correction (OPC) and other Optical Extension Technologies increases the need for understanding specific effects through the pattern transfer process. Sub-resolution features on the mask are intended to compensate the pattern so that the resulting etched features most accurately reflect the designer's intent and provide the optimum device performance. A method for quantifying the Critical Shape Difference between the designer's intent, OPC application, mask preparation, resist exposure and pattern etch has been developed. This work focuses on overlaying features from the various process stages and using CSD to quantify the regions of overlap in order to assess OPC performance. Specific examples will demonstrate the gap in current 1-D analysis techniques.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
7
References
5
Citations
NaN
KQI