Roll‐to‐roll printed carbon nanotubes on textile substrates as a heating layer in fiber‐reinforced epoxy composites

2018 
The performance of wind turbines suffers from icing in regions with extreme climate. One approach is to incorporate heating elements into the most susceptible areas of the wind turbine blade as protection against icing and for de-icing. Cost-efficient and reproducible fabrication, as well as easy integration is important due to the large area of wind turbine blades. In this work, multi-walled carbon nanotubes are applied on a 50% poly(ethylene terephthalate) and 50% polyamide non-woven textile substrate by rotary-screen printing. The printed layers function as resistive heating elements in a fiber-reinforced composite. The heating areas are provided with flexographic or screen inline-printed silver-electrodes and can be integrated by means of vacuum infusion into a glass fiber-reinforced epoxy composite laminate. These laminates, which are connected to an intelligent electrical control system, are suitable for melting ice on the surface of components or for preventing the formation of ice. The first promising experiments on heating structures in a rotor blade of a wind turbine at laboratory scale (2 m length) are the basis of studies on intelligent electrical control of heating structures and their behavior at different temperatures. The heating elements were able to melt a 3–4 mm thick ice layer within 25 min in a climate chamber at −5 °C. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017, 135, 45950.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    11
    Citations
    NaN
    KQI
    []