Lipid rafts are critical membrane domains in blood platelet activation processes

2003 
Among the various hematopoietic cells, platelets are critical for maintaining the integrity of the vascular system. They must be rapidly activated by sequential and coordinated mechanisms in order to efficiently prevent haemorrhage upon vascular injury. Several signal transduction pathways lead to platelet activation in vitro and in vivo, among them, several are initiated via receptors or co-receptors containing immuno-receptor tyrosine-based activation motifs (ITAM) which trigger downstream signalling like the immune receptors in lymphocytes. However, in contrast to immune cells for which the role of lipid rafts in signalling has largely been described, the involvement of laterally segregated membrane microdomains in platelet activation has been investigated only recently. The results obtained until now strongly suggest that early steps of platelet activation via the collagen receptor GpVI or via FcγRIIa occur preferentially in these microdomains where specific proteins efficiently organize key downstream signalling pathways. In addition, lipid rafts also contribute to platelet activation via heterotrimeric G-protein-coupled receptors. They are sites where the phosphoinositide (PI) metabolism is highly active, leading to a local generation of lipid second messengers such as phosphatidylinositol 3,4,5-trisphosphate. Here, evidence is accumulating that cholesterol-enriched membrane microdomains are part of a general process that contributes to the efficiency and the coordination of platelet activation mechanisms. Here we will discuss the biochemical and functional characterizations of human platelet rafts and their potential impact in platelet physiopathology.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    74
    References
    71
    Citations
    NaN
    KQI
    []