Self-Assembled ErSb Nanostructures with Optical Applications in Infrared and Terahertz

2014 
Plasmonic effects have proven to be very efficient in coupling light to structures much smaller than its wavelength. Efficient coupling is particularly important for the infrared or terahertz (λ ∼ 0.3 mm) region where semiconductor structures and devices may be orders of magnitude smaller than the wavelength and this can be achieved through nanostructures that have a desired plasmonic response. We report and demonstrate a self-assembly method of embedding controllable semimetallic nanostructures in a semiconducting matrix in a ErSb/GaSb material system grown by molecular beam epitaxy. The plasmonic properties of the ErSb/GaSb are characterized and quantified by three polarization-resolved spectroscopy techniques, spanning more than 3 orders of magnitude in frequency from 100 GHz up to 300 THz. Surface plasmons cause the semimetallic nanostructures to resonate near 100 THz (3 μm wavelength), indicating the semimetal as a potential infrared plasmonic material. The highly conductive ErSb nanowires polarize e...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    16
    Citations
    NaN
    KQI
    []