Object Shape Measurement Based on Brox Optical Flow Estimation and Its Correction Method

2020 
In this work, a new method of measuring surface shape based on Brox optical flow estimation is presented. The measuring system consists of a projector, a measured object and a charge coupled device (CCD) camera. The grating fringes are projected onto the reference plane at a small angle. Two fringe images—before and after placing the measured object on the reference plane—are captured, respectively. Then, the optical flow field between two images is evaluated by using Brox optical flow algorithm. The theoretical relationship between the optical flow field and the height of the measured surface is established. According to the relationship, the height distribution of the measured object can be retrieved quickly without phase-to-height transformation. However, the calculated height distribution has been found to be deviated from its true value. To solve the problem, a correction scheme suitable for the optical flow method is proposed. By using the correction scheme, the accuracy of the calculated result is greatly improved. Simulations and experiments are completed to verify the feasibility of the proposed method and the accuracy of the correction method. The results show that the proposed method is more accurate than that of the Fourier transform method. Compared with traditional surface shape measurement, the optical flow method has some obvious advantages: (1) Only two frame images are required to recover the height distribution. (2) Relatively simple in measurement process and calculation so less time consuming. (3) Because the optical flow method contains time factor itself, it is more suitable for dynamic measurement. (4) No restrictions on projection pattern.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []