Transgenic mouse model of ventricular preexcitation and atrioventricular reentrant tachycardia induced by an AMP-activated protein kinase loss-of-function mutation responsible for Wolff-Parkinson-White syndrome

2005 
Background— We identified a gene (PRKAG2) that encodes the γ-2 regulatory subunit of AMP-activated protein kinase (AMPK) with a mutation (Arg302Gln) responsible for familial Wolff-Parkinson-White (WPW) syndrome. The human phenotype consists of ventricular preexcitation, conduction abnormalities, and cardiac hypertrophy. Methods and Results— To elucidate the molecular basis for the phenotype, transgenic mice were generated by cardiac-restricted expression of the wild-type (TGWT) and mutant(TGR302Q) PRKAG2 gene with the cardiac-specific promoter α-myosin heavy chain. ECG recordings and intracardiac electrophysiology studies demonstrated the TGR302Q mice to have ventricular preexcitation (PR interval 10±2 versus 33±5 ms in TGWT, P<0.05) and a prolonged QRS (20±5 versus 10±1 ms in TGWT, P<0.05). A distinct AV accessory pathway was confirmed by electrical and pharmacological stimulation and substantiated by induction of orthodromic AV reentrant tachycardia. Enzymatic activity of AMPK in the mutant heart was si...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    29
    References
    130
    Citations
    NaN
    KQI
    []