The effect of energetic electron impact ionization on radiation ionization process of high-altitude nuclear explosion

2012 
The X-ray ionizations and atmospheric temporal evolutions of different altitude nuclear explosions at different distances are numerically simulated. The effects of energetic electron impact ionization on radiation ionization process are analyzed in this paper. It is concluded that the energetic electron impact ionization process is important for radiation ionization, and in the case of 1 kt equivalent explosion at 80 km, the electron density at 1.5 km distance from explosion center increases two orders because of the energetic electron impact ionization. In 5 μs the spectral energy distribution of energetic electrons varies with time, and the number density of energetic electrons decaying with electron energy will present an approximately negative exponential distribution. The peak time of electron density and the influence area of ionization increase with explosion altitude increasing. The ionization effect for 1 kt equivalent explosion at 80 km has an important influence on micro-wave communication in a 100 km range.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []