Ternary supramolecular nanocomplexes for superior anticancer efficacy of natural medicines.
2021
The discovery of effective anticancer drug delivery systems and elucidation of the mechanism are enormous challenges. Using two drug administration-approved biomaterials, we constructed a natural medicine (NM)-loaded ternary supramolecular nanocomplex (TSN) suitable for large-scale production. The TSN has a better effect against cancer cells/stem cells than NM with differentially upregulated (27 versus 59) and downregulated (165 versus 66) proteins, respectively. Treatment with the TSN induced apoptosis and G2/M arrest, inhibited cell proliferation, metastasis and invasion, reduced colony/sphere formation, and decreased the frequency of side population cells and CD133+CD44+ABCG2+ cells. These results were revealed by multiple analyses (proteomic analysis, transwell migration and colony/sphere formation assays, biomarker profiling, etc.). We first reported the proteomic analysis of small lung cancer cells responding to a drug or its nanovesicles. We first conducted a proteomic evaluation of tumor cells responding to a drug supramolecular nanosystem. The supramolecular conformation of the TSN and the interactions of the TSN with albumin were verified by molecular docking experiments. The dominant binding forces in the TSN complexation process were electrostatic interactions, van der Waalsinteractions and bond stretching. The TSN binds to albumin more readily than NM does. The TSN has good in situ absorptive and in vitro/vivo kinetic properties. The relative bioavailability of the TSN to EA was 458.39%. The NM-loaded TSN is a supramolecular vesicle that can be produced at an industrial scale for efficient cancer therapy.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
69
References
0
Citations
NaN
KQI