Effect of Plasmonic Silver Nanoparticles’ Size on Photophysical Characteristics of 4-Aryloxymethyl Coumarins

2018 
The effect of plasmonic silver nanoparticles’ size on photophysical characteristics of four biologically active 4-aryloxymethyl coumarins 4-p-tolyloxymethylbenzo[h] coumarin (4PTMBC), 1-(4-iodo phenoxymethyl)-benzo [f] coumarin (1IPMBC), 4-(4-iodo-phenoxymethyl)-benzo [h] coumarin (4IPMBC), and 4-(4-iodo-phenoxymethyl)- 6-methoxy coumarin (4IPMMC) has been studied using absorption and fluorescence spectroscopy. The size of silver nanoparticles has been estimated by field effect scanning electron microscope technique. The absorption maxima of silver nanoparticles are red shifted with increase in their size. The absorption spectral changes of investigated coumarins with the addition of silver nanoparticles of different sizes suggest their possible interaction with silver nanoparticles. Fluorescence quenching has been observed for all the coumarins with the addition of silver nanoparticles of different sizes. The Stern-Volmer (S-V) plots of fluorescence quenching are found to be linear. The magnitude of quenching rate parameter suggests the involvement of static quenching mechanism. Fluorescence data has been used to estimate binding constants and the number of binding sites. The contribution of diffusion and electron transfer processes in fluorescence quenching mechanism has also been discussed. The values of S-V constant and quenching rate parameter are found to decrease with increase in size of silver nanoparticles.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    3
    Citations
    NaN
    KQI
    []