Insulating nanomagnets driven by spin torque

2017 
Magnetic insulators, such as yttrium iron garnet (Y3Fe5O12), are ideal materials for ultralow power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y3Fe5O12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y3Fe5O12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd3Ga5O12 substrates and lift-off. We observe field-like and antidamping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y3Fe5O12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    26
    Citations
    NaN
    KQI
    []