Targeted Gene Correction of Glanzmann Thrombasthenia Induced Pluripotent Stem Cells Restores Surface Expression and Fibrinogen Binding of Integrin αIIbβ3
2011
Abstract 4173 Glanzmann Thrombasthenia (GT) is a rare, autosomal recessive disorder resulting from an absence of functional platelet integrin αIIbβ3, leading to impaired platelet aggregation and clinically presenting with severe bleeding. It is a model of an inherited platelet disorder that might benefit from corrective gene therapy. Treatment options for GT are limited and largely supportive. They include anti-fibrinolytics, activated factor VII, platelet transfusions, and bone marrow transplantation. Recent gene therapy research in a canine model for GT demonstrated that lentiviral transduction of mobilized hematopoietic stem cells could restore 6% αIIbβ3 receptors in thrombasthenic canine platelets relative to wild type (WT) canine platelets. As an alternative gene therapy strategy, we generated induced pluripotent stem (iPS) cell lines from the peripheral blood of two patients with GT and examined whether a megakaryocyte-specific promoter driving αIIb cDNA expression within the AAVS1 safe harbor locus could ameliorate the GT phenotype in iPS cell-derived megakaryocytes. Patient 1 is a compound heterozygote for αIIb with the following two missense mutations: exon 2 c.331T>C (p.L100P) and exon 5 c.607G>A (p.S192N). Patient 2 is homozygous for a c.818G>A (p.G273D) mutation adjacent to the first calcium-binding domain of αIIb, leading to impaired intracellular transport of αIIbβ3. Both patients express 50% and >70% αIIbβ3 surface expression for patients 1 and 2, respectively. Both patients9 iPS cell-derived megakaryocytes also demonstrated fibrinogen binding upon thrombin activation. This is the first report of the generation and genetic correction of iPS cell lines from patients with a disease affecting platelet function. These findings suggest that this GPIbα-promoter construct targeted to the AAVS1 locus drives megakaryocyte-specific expression at a therapeutically significant level, which offers the possibility of correcting severe inherited platelet disorders beginning with iPS cells derived from these affected individuals. Disclosures: Lambert: Cangene: Honoraria.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
0
References
0
Citations
NaN
KQI